Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein
نویسندگان
چکیده
We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three-dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button-like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule-associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75-kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic immunocytochemistry with a monoclonal antibody (D57) against sea urchin sperm flagellar 21S dynein and colloidal gold-labeled second antibody. Immunogold particles were closely associated with spindle microtubules. 76% of these were within 50 nm and 55% were within 20 nm from the surface of the microtubules. These gold particles were sporadically found on both polar and kinetochore microtubules of half-spindles at both metaphase and anaphase. They localized also on the microtubules between sister chromatids in late anaphase. These data indicate that cytoplasmic dynein is attached to the microtubules in sea urchin mitotic spindles.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains
Cytoplasmic dynein is the predominant minus-end-directed microtubule (MT) motor in most eukaryotic cells. In addition to transporting vesicular cargos, dynein helps to organize MTs within MT networks such as mitotic spindles. How dynein performs such non-canonical functions is unknown. Here we demonstrate that dynein crosslinks and slides anti-parallel MTs in vitro. Surprisingly, a minimal dime...
متن کاملCytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle ch...
متن کاملA Complex of NuMA and Cytoplasmic Dynein Is Essential for Mitotic Spindle Assembly
NuMA is a nuclear protein during interphase but redistributes to the spindle poles early in mitosis. To investigate its role during spindle formation, we tested spindle assembly in frog egg extracts from which NuMA was immunodepleted. Immunodepletion revealed that NuMA forms a complex with cytoplasmic dynein and dynactin. The depleted extracts failed to assemble normal mitotic spindles, produci...
متن کاملDynein and mast/orbit/CLASP have antagonistic roles in regulating kinetochore-microtubule plus-end dynamics.
Establishment and maintenance of the mitotic spindle requires the balanced activity of microtubule-associated proteins and motors. In this study we have addressed how the microtubule plus-end tracking protein mast/orbit/CLASP and cytoplasmic dynein regulate this process in Drosophila melanogaster embryos and S2 cells. We show that mast accumulates at kinetochores early in mitosis, which is foll...
متن کاملMitotic Spindle Poles are Organized by Structural and Motor Proteins in Addition to Centrosomes
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 101 شماره
صفحات -
تاریخ انتشار 1985